3.1 The Origin of rt-Interactions



Electron Density Distribution in Molecules with rt-Conjugated Systems

benzene

® due to C—H electronegativity difference, carbons are partially negatively charged
® mi-system is polarizable, electron-rich, partially negatively charged

® rim of the molecule is electron-poor, partially positively charged

® benzene has no dipolar moment due to symmetry, but a quadrupolar moment

KEY CONCEPT: see Iverson, Chem. Sci. 2012, 3, 2191.



Quadrupolar Moment

® multipole expansion describing the electrostatic potential of an arbitrary charge distribution:
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® quadrupolar moment is second-order term of the electrostatic multipole expansion
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Electron Density Distribution of Increasingly Large n-Conjugated Systems

benzene naphthalene anthracene tetracene pentacene
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® increasingly large polycyclic m-systems remain flat and rigid (good for effective dispersive interactions)

® increasingly high-lying HOMO and hence polarizablity (important for dispersive interactions)
® increasingly large it surface area (crucial for dispersive interactions)

® quadrupolar moments remain locally the same but become (relatively) less important
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Substituents with Inductive Effects
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benzene hexafluorobezene

® inductive effect from electronegative substituents reduces electron density in nt-system
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Examples of Electron-rich and Electron Poor n-Conjugated Systems

F F F F F
F F
F F F F F

pentacene perfluoropentacene

® perfluorination inverts quadrupolar moment of aromatic systems irrespective of size
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Resonance Structures Involving Electron-Withdrawing Groups

e —\ substituents determine electron density and reactivity patterns in t-conjugated systems
0, O 0 0 0 0

charge distribution HOMO LUMO

® overall electron density in the n-system decreased (compared to benzene)

® every second carbon in delocalized it system is electron-poor (positive partial charge 6+)
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Resonance Structures Involving Electron-Donating Groups

® +M substituents determine electron density and reactivity patterns in t-conjugated systems
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® overall electron density in the nt-system increased (compared to benzene)

® every other carbon in delocalized it system is electron-rich (negative partial charge 6-)
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Substituents with Mesomeric Effects

N
NH., H C
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aniline (aminobenzene) benzene benzonitrile (cyanobenzene)
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® mesomeric effects have strong influence on electron density distribution in m-system
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Examples of Electron-rich and Electron Poor n-Conjugated Systems

S S NC CN
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tetrathiafulvalene (TTF) tetracyanoquinodimethane (TCNQ)
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® heteroatoms with free electron pairs as part of the aromatic system are +M substituents

® heteroatom double bonds connected to the mt-system are —M substituents
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Examples of Electron-rich and Electron Poor n-Conjugated Systems
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perylene perylene bisimide

® —M substituents invert quadrupolar moment of aromatic systems irrespective of size
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Intermolecular forces between mnt-conjugated molecules
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® 1i-conjugated molecules pack due to three attractive intermolecular forces:

e Keesom force (electrostatic interaction), the attractive or repulsive interactions between
permanent charges, dipoles, and multipoles (quadrupoles in most cases)

® Debye force (induction interaction), the attractive interactions between a permanent dipole
and an induced dipole (only for molecules with polar substituents)

® [ondon force (dispersive interaction), the attractive interactions between induced dipoles

e i-conjugated molecules pack at Van der Waals distance due to dispersive interactions optimized for
quadrupolar moment interactions; MO (exchange) interactions play no role
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Packing Patterns for Electron-rich Systems

face-to-face parallel-displaced T-shaped Y-Shaped
n—n stacked n—n stacked edge-to-face edge-to-face

never observed

Ho
3.4-3.8AH

® m—T interactions are a combination of dispersive interactions with quadrupolar interactions

KEY CONCEPT: (original literature Kim, Phys. Chem. A 2007, 111, 3446)



Equilibrium mt-stacking structure

e molecular crystals forms due to a reduction of potential energy of a multi-molecule system
® relative positions adopted by the molecules in the crystal minimize potential energy
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® n—Tt interactions are weak (5-50 kJ/mol) and have a short range (£ d_6)

=PrL Phys. Chem. Chem. Phys. 2014, 16, 21957. 120



Packing Patterns for Electron-poor Systems

face-to-face parallel-displaced T-shaped Y-Shaped
n—n stacked n—n stacked edge-to-face edge-to-face

never observed

® n—n interactions are a combination of dispersive interactions with quadrupolar interactions
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Packing Patterns for Mixed Systems

face-to-face face-to-face edge-to-edge
rn—n stacked rn—n stacked dipolar
eclipsed staggered C—H---F hydrogen bond

® mixed electron-poor/rich aromatic systems dominated by electrostatic interactions
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Learning Outcome

® polycyclic m-conjugated systems have quadrupolar moment
® rigid system with flat, smooth surface & polarizable nt-system for good dispersive interactions

® supramolecular packing balances intermolecular forces and minimizes the associated total
potential energy
e typical motif is parallel-displaced ni—rt stacking

® another typical motif is the edge-to-face orientation

e ideally, periodic packing in the solid state accommodates both motifs
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